An Incremental Framework Based on Cross-Validation for Estimating the Architecture of a Multilayer Perceptron
نویسندگان
چکیده
We define the problem of optimizing the architecture of a multilayer perceptron (MLP) as a state space search and propose the MOST (Multiple Operators using Statistical Tests) framework that incrementally modifies the structure and checks for improvement using cross-validation. We consider five variants that implement forward/backward search, using single/multiple operators and searching depth-first/breadth-first. On 44 classification and 30 regression datasets, we exhaustively search for the optimal and evaluate the goodness based on: (1) Order, the accuracy with respect to the optimal and (2) Rank, the computational complexity. We check for the effect of two resampling methods (5 × 2, ten-fold cv), four statistical tests (5 × 2 cv t, ten-fold cv t, Wilcoxon, sign) and two corrections for multiple comparisons (Bonferroni, Holm). We also compare with Dynamic Node Creation (DNC) and Cascade Correlation (CC). Our results show that: (1) On most datasets, networks with few hidden units are optimal, (2) forward searching finds simpler architectures, (3) variants using single node additions (deletions) generally stop early and get stuck in simple (complex) networks, (4) choosing the best of multiple operators finds networks closer to the optimal, (5) MOST variants generally find simpler networks having lower or comparable error rates than DNC and CC.
منابع مشابه
An Incremental Bayesian Approach for Training Multilayer Perceptrons
The multilayer perceptron (MLP) is a well established neural network model for supervised learning problems. Furthermore, it is well known that its performance for a given problem depends crucially on appropriately selecting the MLP architecture, which is typically achieved using cross-validation. In this work, we propose an incremental Bayesian methodology to address the important problem of a...
متن کاملBayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
In this work, we discuss practical methods for the assessment, comparison, and selection of complex hierarchical Bayesian models. A natural way to assess the goodness of the model is to estimate its future predictive capability by estimating expected utilities. Instead of just making a point estimate, it is important to obtain the distribution of the expected utility estimate because it describ...
متن کاملVideo Annotation Framework for Accelerometer Placement in Worker Activityrecognition Studies
Automated recognition of worker activities has the potential in aiding quick assessment of labour productivity on construction sites. A novel method called accelerometer based activity recognition has been investigated and preliminary results show that it has good potential for deployment in construction environment. The major decisive factor influencing the performance of the activity recognit...
متن کاملSecurity System Based on User Authentication Using Keystroke Dynamics
−Keystroke Dynamics is behavioural biometric used to measure the typing rhythm of the user when an individual types on the keyboard. It is assumed as a robust behavioural biometric. The functionality of this biometric is to measure the dwell time and flight time for changing keyboard actions. The paper focuses on enhancement of security using individual’s typing actions to distinguish between a...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 23 شماره
صفحات -
تاریخ انتشار 2009